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The restricted fo~ulation [l] of the problem of the stability of the motion of an elastic satellite around 

a circular orbit in a Newtonian central field of force is considered. The satellite is modelled by a rigid 

body with an attached arbitrary isotropic elastic element. It is assumed that the vector of a small 

deformation of the satellite can be represented as an infinite series in terms of the known orthogonal 

characteristic modes of free oscillations of the satellite 12, 31. Using the theorem in [4] on the stability 

with respect to some of the variables, one can specify sufficient conditions for the stability of relative 

~uiii~ium states of the satellite with respect to the velocities and position coordinates, including an 

arbitrary finite number of generalized coordinates defining the deformed state of the elastic satellite. 

The influence of the discarded elastic coordinates (which defiue the elastic deformation) is taken into 

account. Equations for finding the deformations of the satellite in a relative equilibrium state are 

presented, the state being always characterized by the fact that the main central axes constructed for the 

given equilibrium state of the sateltite are parailel to the axes of the orbital coordinate system. 

Necemary and sufficient conditions for the lack of deformation of the satellite in a relative equilibrium 

state are given. 

1, WITHIN a restricted formulation ]I] we consider the motion of an elastic satellite in a 
Newto~an central field of force, the satellite being modelled by a rigid body with an elastic 
element attached to it. The centre of mass of the satellite moves at a constant angular velocity 
around a Kepler circular orbit of radius &, with an attracting centre. 

We introduce the following right-handed orthogonal Cartesian systems of coordinates: 
Oy,y,y, is the orbital coordinate system (OCS) with origin at the centre of mass of the satellite 
and unit vectors & y of the axes Oyz, Oy,, the axis Oy, is parallel to the radius vector of the 
point 0 relative to the attracting centre, the axis Oyl is parallel to the transversal direction to 
the orbit at 0 and points in the direction of motion of the satellite, w=lol@ denotes the 
angular velocity of orbital motion with o = const > 0, 04x,x, is the coordinate system rigidly 
attached to the satellite (SCS) with unit vectors i' (k=l, 2, 3) of the axes, with origin at the 
centre of mass 0, of the non-deformed satellite, and with axes parallel to the main central axes 
of the satellite, O+QX~ is the coordinate system with origin at the centre of mass 0 of the 
satellite and unit vectors i' of the axes, respectively, and 0 denotes the angular velocity of the 
trihedron Ox,n,x, relative to Oy,y,y,. 

The positions of relative equilibrium of the elastic satellite are those in which the satellite is 
at rest relative to the OCS. If, in a position of relative equilibrium the elastic element of the 
satellite is in a deformed state, then the equilibrium will be called non-trivial. 

Suppose that the points of the rigid body of the satellite occupy a bounded region u, and the 
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points of the elastic element occupy a bounded region u, in the non-deformed state. Let I be 
the common boundary of the regions u, and u,, and let zf= u, +v,. We shall assume that the 
regions are defined relative to the SCS. 

We denote by I: (I E U) the radius-vector of an arbitrary point M of the satellite. When there 
is a deformation p = r c u(t, r) will be the radius-vector of M relative to 0. Here t E [0, -) is the 
time and the function u: ( t, r) + u(t, r) is sufficiently smooth in t, and r and defines the 
displacement of M resulting from a small deformation of the elastic element. 

Let us state the following ass~ptions to be used later on. 
1. The displacement vector u(t, r) can be represented as an infinite series in terms of the 

characteristic modes of the whole satellite 

where Y,(r) = (‘I$, ‘u,“, ‘I’,‘> are the c~racteristic modes of elastic oscillations of the satellite 
relative to the non-deformed state with components expressed in the system 0x,x,x,, and 
where cr,(t) is the generalized coordinate of the nth mode of elastic oscillations. We assume 
that the system (w”} is orthogonal (I,, Yf,Yi dm = 0 if i # j or n # p [2,3 J) and q = {q,) E 1, is the 
Hilbert space of sequences with bounded norm II q II= (Z#‘“. Here and in what follows, unless 
otherwise stipulated, summation is carried out over II from 1 to 00. We assume that the 
conditions for the convergence of the functional series are such that all the operations to be 
applied to the series in the present paper are correct. 

2. The central ellipsoid of inertia of the satellite is triaxiai in the non-deformed case. 
3. The potential energy of gravitational forces is given by the approximate expression [l] 

II, = -ton/&, +#2(3yJy-~J)/2 (1.2) 

where m is the mass of the satellite, p is the product of the universal constant of gravitation and 
the mass of the attracting centre, and J is the inertia tensor of the satellite about the centre of 
mass 0. 

4. The elastic element of the satellite is assumed to be isotropic. In the case of small 
deformations its potential energy can be represented as (cf. 12)) 

rI=+&I; (1.3) 

where c,,,, > 0 are real constants. 
5. In what follows we shall consider only those q = {q,J for which the kinetic energy of the 

satellite about its centre of mass is a positive definite form of Q and 4. = {@n), ( l = a/at). 
The Greek letters p, y, o, Q, p, Y denote the corresponding vectors, the components of 

which are denoted by indices. 
Taking (1.1) into account, we represent the inertia tensor in the form [2-4] 

J=f(p.pE-p:p)dm=Jo+r.q,J,+Zp,2J, 
u 

(1.4) 

Here and henceforth a. b is the scalar product of a and b, a : b is the dyadic product of a and 
b, E is the unit matrix, and integration is carried out over V. 

The matrices formed by the components of J, J,, J,, J, in the coordinate system 0x,x,x, 
read 
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where ltk (k = 1, 2, 3) are the main central moments of inertia of the non-deformed satellite, 
and xi is the jth component of r in the SCS [2]. 

Various approaches to the construction of the equations of motion of complex mechanical 
systems were discussed in [S, 61. In the case under consideration, the equations of motion can 
be obtained from the equations in [S, p. 451. 

In the present paper the form of the equations of motion will neither be used nor stated. 

2. We know [l-6] that, in the case under consideration, along with the particular integrals 

u, nrr-1=0,V2~~~-1=0,U3~rff=0 (2.1) 

of the direction cosines, the equations of motion of an elastic satellite relative to the centre of 
mass admit of the Jacobi type integral 

U=Tg+II+II,-cirJo/2=const (2.2) 

where T, = A-Ha I2 + nG + T is the kinetic energy of the satellite relative to 0, G and T being 
the vector of the kinetic momentum of the satellite relative to 0 and its kinetic energy due to 
the elastic deformations only. 

Using representation (1.1) we have 

G-j(r+u)m~dm=~G,q;,+ xG,q,,,q;, 
n n.m 

G, = rx\Y,dm,G, t Y,,, x\y,dm I I (2.3) 

(2.4) Tl$lu.u.drn=$Za,q~q~.a, >O 

Suppose that the values 

n=nO,~=~O,r=rO,q=q0,q’=q0’ (2.5) 

of the variables of the problem define the equilibrium state of the satellite (unperturbed 
motion) and 

n’=n-a0,~‘=~-~O,r’=r_rO, (2.6) 

q” = q’-#‘,(I* ‘Q-Q0 

describe the deviation from the unperturbed motion, 
We introduce the functions 

V(~*,~*,~L,qL,q*~)=U+3432a(g*)U~ -302a(q’)U, /2+0*V(q*)UZ 

V,(q’,y*,~*)=n+n,-oJo/2+3w2S(q‘)U3 -30*a(q*)U,+o*v(q’)u* 

v(d,y*,B*,q*.q+‘)= T, +Y 

(2.7) 

where the undefined Lagrange multipliers can be represented in the form 
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a(Q*)=XOf~:h-,(4,:+QnO)+~;CI(@n++4n0)2 

4)=$ +Cqz,‘+DJ,((1,‘Y 

v(q*)=v,+I:v,q,‘+c,v,(q,,)* 

By the equations of the unperturbed motion and Poisson’s kinematic equations 

(2-g) 

8’=pxi& y’=yxn 

we have dVldt = 0. 
According to Routh’s theorem the equations for finding the quantities 

determined Lagrange multipliers (2.8) obtained from the condition 6V = 0 
P ** = 0 can be written as follows: 

yO.yO_l=O, ~O.#+Ll=20) +f#Lo 

+302yo(Js + 2q,J,)y” f 2 - a2 HJ, + 2dJ,V 2 - 

-w2Bo(JII+2qjllJ,)Bo/2=0 

J(q” )a0 + X (G,,,q: + I5 G,,,,(l; )d,’ = 0 
WI P 

(~G~~~ +G~)~+~~~~ =O 

where J(q”) is the value of (1.4) for 4 = q”, 

(2.5) and the un- 
for fz*=O, , , . , 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Solving the second group of equations (2.12) for 4:’ (9, >O) and substituting the resulting 
values into the first (vector) equation (2.12), we arrive at the conclusion that system (2.12) has 
a unique solution 0’ = 0, q"' = 0, subject to the condition 

det(Z(q’) + ~G~G~*a~) # 0 GE = G, + x GM& (2.13) 
Ill 

where Gz is the column formed by the components of Gi in the coordinate system 0x,x,x,. 
The violation of (2.13) contradicts assumption 5. 

To solve Eqs (2.9)-(2.11) and carry out the subsequent investigation, we use the coordinate 
system OX,“X$,” with origin at the centre of mass of the satellite, in which the matrix formed by 
the components of the tensor of inertia J(q") is diagonal. We denote by ek(qO) the unit vectors 
of the corresponding axes and by P(q") the orthogonal matrix of the transformation of the 
system 0x,x,x, to Ox;Ox$~. 

The same notation will be used for the matrix of components of any of the tensors 
encountered in this paper relative to the coordinate system G.x~x$.~. 

In view of (2.9), taking the scalar product of the first equation in (2.10) and B” as well as the 
scalar product of the second equation and y”, we obtain 1(O) =-8°rJ(qo)yo and 3X0= 
yoTJ(qoMo, which implies that h(O) = 0 independently of the values (I,” defining the unperturb- 
ed motion. It follows that h(q) = 0, that is, &, = 0, h, = 0, h,,,, = 0, y” and p” being distinct unit 
eigenvectors of J(q”) with eigenvalues a,, v, and components l3” =<sf, l3:, pi)‘, y” =(yy, y& 
y3’. 
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By the method of perturbation theory [7], we can determine the eigenvalues pk(qo) and the 
corresponding orthonormal eigenvectors ek(qo) of the matrix Z(q’) as power series in cl[i 

(Z,k, i”) being a characteristic pair of the matrix IO = diag(Z,& I,‘, I,“). 
It is obvious that, using (2.14), the orthogonal transformation matrix P(q”) can be 

represented as 

Z%I”) = (e’(q”),e2(qoXe3(q0)) = E + ~qfP,+... (2.15) 

where e”($) is the column formed by the components of ek(qO) in the system 0x,x,x,. 
By the theorem on the transformation of the components of a tensor when changing to a 

new system of coordinates, we have 

J, = pii= P(qO)ZnP’(qO), J, = I./L1 = P(qO)Z,P’(qO) (2.16) 

In terms of the projections onto the axes Ox~x$~, the solution of Eqs (2.9) and (2.10) can be 
written as follows: 

Vk,t,m~z{(1,2,3}, R#litm 

a; = 0, qO’ =o, ho =o, & =o, h, =o (n=1,2,...) 

vg = #(qO), pp = *t&k 

cso = @“(q’), r; = rt&,,,(i = 1,2,3) (2.17) 

where Sij is the Kronecker delta, and where qi can be determined from the following 
equations obtained from (2.11) taking (2.17) into account 

(2.18) 

The quantities o,, v,, 6,, v, from (2.8) can be determined by investigating the conditions 
for the solutions of (2.17) and (2.18) to be stable. 

If system (2.18) has no real solutions, the satellite has no positions of relative equilibrium. 
The assertion below follows from (2.17). 

Assertion 1. For a fixed system of integers k, I, me 11, 2, 3), every solution of (2.18) defines 
four distinct equilibrium states of the satellite 
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&$ =o, qO’=O 

BP(qO)=+$ik, yf(q”)=+6im, i=L2,3 (2.19) 

If a position of relative equilibrium of the satellite exists, its main central axes constructed 
for a given equilibrium state are parallel to the axes of the orbital coordinate system. The 
assertion below follows if formulae (2.15) and (2.16) are taken into account. 

Assertion 2. In order that a trivial relative equilibrium state defined by q,” = 0 exists, it is 
necessary and sufficient that 

I,“-In-+I~‘/2=o (2.20) 

foreach n=l,2,.... 
Equations (2.20) impose certain restrictions on the position and characteristics of the elastic 

element. 

3. Suppose that Eqs (2.18) have an isolated solution and (2.19) are the positions of 
equilibrium of the satellite (unperturbed motions) corresponding to the solution. We will use 
Theorem 1 to study the stability of these states with respect to some of the variables [4, p. 1311. 

As the Lyapunov function we take 

V-G*B*,q*,q*‘)= v(sz’,y’,~*.q’,q*‘,~~, vij)-V(O) 

where V(0) is the value of V for the unperturbed motion (see (2.7)) and dWldf = 0 by virtue of 
the equations of perturbed motion. 

In a small neighbourhood of the unperturbed motion 

w=T,+v,-v,(o)=T,+m*(o)+s2v,(o)+... (3.1) 

If assumption 5 and the fact that 6Vl(0) = 0 are taken into account, then the conditions ensuring 
that S’V,(O) is positive definite with respect to some of the variables 

gw, = su;, 6wz = sfl; , t5wg = &y;, SW, = I$; 

6~s =@;, 8wg = S/3;, &w~+~ = 6q:(i = l,...,N) 

on the linear manifolds defined by the equalities SUj = 0 (j = 1, 2, 3) will be sufficient in order 
for the positions of equilibrium of the elastic satellite with respect to Rj, pi, yi, ql, . . . qN, q;, 
q; to be stable. 

We represent 6*V,(O) as a denumerably-dimensional quadratic form with real matrix H1 

S2V,(0) = GWTHJW, Ill = 
B C 

w s (wI,w~,...)~, BT =(b,,...,b~), bi =(bilvbi2v..*)T 

(3.2) 

(3.3) 
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I = t(v,,E - J,,) + 29: W,,,,E - J,,,, >>B” 

i = 1,2,..., 6; n = 1,2,... 

The diagonal matrix 

C=l~cK2c,+2(J~-J~-J;/2)~,n=1,2,... 

A1 = d@dXJ~ - %I, 0% - Jb 3(J,2 - CQ), (~0 -J,‘>. 3(J,3 -a,,). (v, -J,‘)> 

(3.4) 

Remark. For any solution (2.17), (2.18), two of the diagonal elements of A1 vanish and the 
quantities cr,, o,, v,, v, in (3.3) and (3.4) can be chosen in such a way that the elements of 
the matrix B (St) appearing in the rows (columns) passing through those vanishing diagonal 
elements are also equal to zero 

It follows that the Lagrange multipliers (2.8) are defined completely. 
We fii an integer N and set 

we = (q,..., W&WN =(w,“..‘Wg+N)T 
w*= (W6+N+l.W6+N+2.--* IT 

B,,, is the (6x N)-matrix formed by the fist N columns of B, & is the matrix obtained from B 
by crossing out the first N columns, and CT,, C. are the fol!owing parts of the matrix C, which 
are also diagonal matrices 

The matrix H, has a block representation of the general form 

A1 BN B. 
H, = 

I I 

B; C, 8 

B: 8 C. 

where 0 is the (N x00) null matrix. 
If the diagonal elements of C. are positive and bounded away from zero, then, extracting a 

perfect square, one can write 

(AI - BG*B!) BN 
cPv,(O) = 6wy, I I &“N+ 

B,: CN (3.5) 

+(hd + sw~&c.-‘)c.(sw* + C,_‘Bsw,) 

The conditions of the theorem [4] will be satisfied if the quadratic form 6w, of a finite 
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number of variables in (3.5) is positive-definite on the linear manifolds SU, = 0 (i = 1, 2,3). 
Using the well-known method (see, for example, [S]), we arrive at the equivalent problem of 

studying the conditions for the quadratic form with the real [(3 + N) x (3 + iV)]-matrix 

cN xb; d 
Hz X0 

YO A 
20 (3.6) 

to be positive-definite. 

x0 =2(Jf”‘+2qfJI~,...,J$“+2q;J~) 

y. = I~(J,~ + 2qfJ,y,..., J$’ + 2q;J$) 

z. = (J;’ + 2q;J;; ,...,J; +2q;J&,) 

If the rows of infinite length are denoted by 

and the energy scalar product is introduced by the formulae 

(x*,x*) = x*C~lX:,(X*, y*) = x*c.-‘y,T 

then 

(3.7) 

‘JbL_J- 

I 

0 0 -(x.,x*) -(&Ye) -(x*,2*) 

A= -(X*,Y*) J; - Jam -(Y**Y*) -(u+) 

-(x*,2.) -(y.,z.) J,“-J$(z,,z. I 

In order that H be a positive-definite matrix it is necessary that all the diagonal elements Of 
H, including the diagonal elements of A, be strictly positive. 

Next, we choose a E (0,l) in such a way that 

Jr - J: = a(Jr - Jo-), Ji’ -Jo “““=(l-a)(J,ht-Jo-) 

and introduce the following row vectors of infinite length formed by the rows 4,, X; Yo, Yd 

by z 
1 1 

x~(xolx.),y~(l-a)~~(yoiy.),~=a~Z(Sglz.) 

We define the energy scalar product of vectors 

(x,x) = Xc-‘XT, (x, y) = xc-‘yT ,... 

The roots of the quadratic equation 

(S - (y. y))(s - (x,x)) - (X*Y)2 = 0 

(3.8) 

(3 -9) 
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arising in the study of the sign of the global diagonal minor of order N +2 of H will be 
denoted by 

fl = +)+ (Y,Y))-+,x) -(y,y)))2 +(x&2]+ 

f2 =f((x.x)+(y,y))+((t((x,x)-(~.~))~2+~x,~)2)~ 

It is seen that 0 < f, < f.. Let u,, R, a, be the roots of the cubic equation 

s3-s2p+sg-R=O 

with 

(3.10) 

P =cw+(Y,Y)+(w), g= (Y,Y)w)-(YJ)2 + 

+(w)(Y*Y) -(x*Y).2 + kxk4- (x,z12, 

R =d~~~~~ $$ ~~~1 
which arises when the determinant of H is evaluated. 

If Eq. (3.10) has one real root, or one simple real root, or one real root 3, then this root is 
denoted by 15. In the case of three distinct real roots we assume that a, <a, <a, [9]. 

The necessary and sufficient conditions for H to be positive definite, which, by Rumyan- 
tsev’s theorem, are also sufficient for the equilibrium states (2.19), (2.18) to be stable with 
respect to some of the variables, are given in the following assertion. 

Assertion 3. Subject to assumptions l-5, in order for the positions of relative equilibrium 
(2.18), (2.19) to be stable with respect to some of the variables 4, Q, Sz,, (I*, yi, pi, ql, . . . , 
qN, where N is an arbitrary positive number, it is sufficient that the conditions 

J; > J; > Jr (3.11) 

o”c, +2(J,“” -J: -J: 12) > E, R = 1,2,... (3.12) 

be satisfied for some E > 0. 

.J;-J;>f2 (3.13) 

If Eq. (3.10) has three distinct real roots, then conditions (3.13) must be supplemented by 

(3.14) 

Otherwise the conditions must be supplemented by 

(3.15) 

The following less cumbersome, but cruder result also holds. 

Assertion 4. Under the assumptions made, in order for the positions of relative equilibrium 
(2.18), (2.19) to be stable with respect to some of the variables sZi, q’, w,,, it is sufficient that H 
be a matrix with strict diagonal predominance (i = 1, 2,3) [lo]. 

One can treat (3.10) as the condition for a firm of elastic satellite in a position of relative 
eq~libri~ to be stable (cf. [l]). Condition (3.12) is analogous to the corresponding conditions 
in [2,3]. In the general case the need for a guaranteed difference between the main moments of 
inertia defined by (3.13) and (3.14) was indicated in [2,4]. 
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The main difficulty one encounters when searching for the positions of relative equilibrium 
of the satellite is to solve Eqs (2.18). Approximate solutions can be obtained by using the 
linear approximation of these equations with respect to 9,” and applying the reduction method 
WI. 
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